Nonreference Medical Image Edge Map Measure
نویسندگان
چکیده
Edge detection is a key step in medical image processing. It is widely used to extract features, perform segmentation, and further assist in diagnosis. A poor quality edge map can result in false alarms and misses in cancer detection algorithms. Therefore, it is necessary to have a reliable edge measure to assist in selecting the optimal edge map. Existing reference based edge measures require a ground truth edge map to evaluate the similarity between the generated edge map and the ground truth. However, the ground truth images are not available for medical images. Therefore, a nonreference edge measure is ideal for medical image processing applications. In this paper, a nonreference reconstruction based edge map evaluation (NREM) is proposed. The theoretical basis is that a good edge map keeps the structure and details of the original image thus would yield a good reconstructed image. The NREM is based on comparing the similarity between the reconstructed image with the original image using this concept. The edge measure is used for selecting the optimal edge detection algorithm and optimal parameters for the algorithm. Experimental results show that the quantitative evaluations given by the edge measure have good correlations with human visual analysis.
منابع مشابه
Unsupervised edge map scoring: A statistical complexity approach
Through the last decades, edge detection algorithms have obtained a great degree of sophistication, not being the same with the tools that evaluate their performance. The selection of the best possible edge map output for a given image in an unsupervised way, without prior knowledge of the real edge structure, is still an image processing open problem. In this work we define a method to evaluat...
متن کاملMultimodal medical image fusion based on Yager’s intuitionistic fuzzy sets
The objective of image fusion for medical images is to combine multiple images obtained from various sources into a single image suitable for better diagnosis. Most of the state-of-the-art image fusing technique is based on nonfuzzy sets, and the fused image so obtained lags with complementary information. Intuitionistic fuzzy sets (IFS) are determined to be more suitable for civilian, and medi...
متن کاملDetection of Coastline Using Satellite Image-Processing Technique
Extended abstract 1- Introduction Coasts maintain their natural sustainability without human intervention and in spite of short-term changes, we are ultimately confronted with a coastal healthy environment, i.e. natural, rocky beaches, sandy beaches and so on. Today's use of remote sensing in most natural sciences is widespread. Due to the fact that fieldwork is costly and time-consuming, ...
متن کاملTexture and Shape Content Based MRI Image Retrieval System
More number of techniques about medical image retrieval is used in medical domain. In our Content Based Medical Image Retrieval System, high level semantics of an image is very important. Regarding with this issue, we proposed a method using co-occurrences matrix to extract texture features and Canny Edge Detection is to extract shape features. Then K-means clustering algorithm and Euclidean di...
متن کاملFrom Contours to Ground Truth: How to Evaluate Edge Detectors by Filtering
Edge detection remains a crucial stage in numerous image processing applications. Thus, an edge detection technique needs to be assessed before use it in a computer vision task. As dissimilarity evaluations depend strongly of a ground truth edge map, an inaccurate datum in terms of localization could advantage inaccurate precise edge detectors or/and favor inappropriate a dissimilarity evaluati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014